'천문'에 해당되는 글 4건

  1. 2018.03.23 태양계 최고의 탱커 목성
  2. 2012.12.19 SN 2006gy
  3. 2012.12.17 항성 -2- 중성자 별
  4. 2012.12.17 항성의 종류 -1- 백색 왜성


엄청난 중력으로 수많은 소행성을 붙잡아 주고



가끔 혜성에 대신 맞아주기도 하는


내행성들의 영원한 형님 

목성

Posted by Lucidity1986

댓글을 달아 주세요

Sn2006gy CHANDRA x-ray.jpg


SN 2006gy 2006년 9월 18일 페르세우스자리에서 발견된 매우 강력한 거대 초신성이다. 때때로 ‘하이퍼노바’, 또는 ‘쿼크 노바’라고 불린다. 거리는 약 2.38억 광년(7200만 파섹)이며, 폭발하기 직전의 질량은 태양의 150배이다. 폭발을 일으켰을때의 폭발 에너지는 1052에르그이다. 원래의 별은 동반성이었으며, 질량은 태양의 130-250배에 달할 것으로 추정된다. 2006년 9월 18일 Robert Quimby 와 P.Mondon 그리고 몇 팀의 천문학자들이 찬드라,  그리고  망원경을 이용하여 발견하였다. 2007년 5월 NASA와 일부 천문학자들은 이 천체에 대해 “그 동안의 기록된 것들 중 가장 밝은 별의 폭발” 이라고 발표했다. 2007년 10월 Quimby는 SN2005ap의 기록이 SN 2006gy로 인해 갱신되었다고 발표했으며, 타임지는 2007년 과학적 발견 Top 10에 이 천체를 올려놓았다.


SN 2006gy 는 거의 2억 3천 8백만 광년 (72 메가파섹) 떨어진 NGC1260이라는 먼 은하에서 발생하였다. 따라서, 초신성에서 지구까지 도달하는 시간적 차이로 보면 이 현상은 2억 3천 8백만 년 이전에 발생한 것이라 볼 수 있다. SN 2006gy는 태양질량의 150배에 달하는 매우 거대한 항성의 초신성 폭발이며 이중 구조 초신성일 가능성이 있다. 이것의 폭발로 인해 발생되는 운동에너지는 1052erg (1045J)로 추산된다. 이중 구조 초신성은 태양질량의 130배에서 250배나 되는 매우 큰 질량의 항성에서만 일어날 수 있다.

SN 2006gy에서의 빛의 휘어짐은 다른 초신성 타입들과는 비교가 된다. SN2006gy의 광도는 맨눈으로 보아도 충분히 밝은 SN1987A의 100배에 다다름에도 SN1987A보다 1400배나 더 멀리 떨어져 있다. 이 거리는 망원경 없이는 관측할 수 없을 정도의 먼 거리이다. 칼가리 대학의 캐나다 과학자인 Denis Leahy와 Rachid ouyed는 SN2006gy는 쿼크별의 탄생이라고 제안해왔다.


용골자리 에타는 우리 은하에 있으면서 지구로부터는 7,500광년 떨어져 있는 매우 밝은 극대거성이다. 에타별은 SN2006gy 보다 32,000배나 더 가깝게 있기 때문에 이로부터 오는 빛은 SN2006gy보다 10억배 더 밝을 것으로 예측된다. 에타는 SN2006gy가 될 정도의 항성과 비슷한 크기를 가지고 있다. SN2006gy를 발견한 사람중 한명인 Dave Pooley는 만약 용골자리 에타가 비슷한 방법으로 폭발한다면 지구에서 밤에도 낮보다 더 환한 상태에서 글을 읽을 수 있을 정도로 충분한 빛이 나온다고 말한다. SN2006gy 의 겉보기 등급은 15등급 이므로 에타별에서 비슷한 현상이 일어난다면 그 때의 겉보기 등급은 -7.5등급까지 측정될 것이다. 천체물리학자인 Mario Livio에 따르면 이러한 현상은 언제든지 일어날 수 있지만 지구상의 생명체에게 끼치는 위험은 적다고 말한다.

'其他 關心事 > 天文' 카테고리의 다른 글

외계 행성 케플러-22b  (0) 2012.12.19
외계 행성 HD 209458 b  (0) 2012.12.19
SN 2006gy  (0) 2012.12.19
초신성(Supernova)  (0) 2012.12.19
감마선 폭발  (0) 2012.12.19
거성 및 초거성, 그리고 극대거성  (0) 2012.12.19
Posted by Lucidity1986

댓글을 달아 주세요

출처 : 위키백과


중성자별(中性子-, 중성자성)은 항성 진화에서의 종점의 하나이다. 중성자별은 무거운 항성이 항성 진화의 마지막 단계에서 II형, Ib형 혹은 Ic형 초신성을 겪은 다음에 남게 되는 핵이 중력 붕괴를 거치면서 만들어진다.

일반적인 중성자별은 태양 질량의 1.35배에서 2.1배에 해당하는 질량을 가지는 반면, 태양 반지름의 1/30,000에서 1/70,000에 해당하는 10-20 킬로미터의 반지름을 가진다. 그러므로 중성자별의 밀도는 원자핵의 밀도와 맞먹는 8×1013g/cm³ ~ 2×1015 g/cm³(세제곱 센티미터당 8000만~20억 t)수준이다.

 반면, 찬드라세카르 한계, 즉 외부 껍질이 날아간 이후에 남은 핵의 질량이 태양 질량의 1.44배 보다 가벼운 항성은 백색왜성으로 변하며, 외부 껍질을 제외한 핵의 질량이 1.44배보다 이상이면, 별의 자체 중력으로 인하여 원자핵과 전자의 경계가 모호해져 모든 내부 물질이 중성자로 바뀌는 중력 붕괴과정을 거친 후 블랙홀이나, 중성자성으로 변하게 된다.


중성자별은 원래의 별이 지니고 있던 각운동량의 대부분을 유지하는 반면, 중력으로 인해 반지름은 매우 작아져있는 상태이므로, 1.07초에서 30초 정도에 한바퀴라는 매우 빠른 자전 속도를 보이게 된다. 또한, 중성자별의 표면 중력은 지구 중력의 2000억 배에서 3조 에 이른다. 

중력을 측정하는 한가지 방법은 탈출 속도를 측정하는 것이다. 탈출 속도란 중력권에 있는 물체를 무한대의 거리로 옮겨가기 위해 필요한 속도를 의미한다. 중성자별에서 탈출 속도는 의 속도의 절반 정도인 150,000 km/s나 된다. 

반대로, 어떤 물체가 무한대의 거리에서 중성자 별의 표면으로 낙하하게 된다면 그 낙하 속도 역시 150,000 km/s이 될 것이다. 만약 보통의 사람이 이 속도로 중성자별과 충돌하게 된다면, 이는 200 Mt 정도의 핵폭탄의 위력과 맞먹을 것이고, 이는 인류가 폭발시킨 가장 큰 핵폭탄인 차르 폭탄의 4배에 해당한다.




'其他 關心事 > 天文' 카테고리의 다른 글

초신성(Supernova)  (0) 2012.12.19
감마선 폭발  (0) 2012.12.19
거성 및 초거성, 그리고 극대거성  (0) 2012.12.19
항성 -2- 중성자 별  (0) 2012.12.17
항성의 종류 -1- 백색 왜성  (0) 2012.12.17
지구에서 가까운 별 순위  (0) 2012.12.16
Posted by Lucidity1986

댓글을 달아 주세요

출처 : 위키백과


파일 : 시리우스 A와 B 허블 photo.jpg


백색왜성(白色矮星)은 중간 이하의 질량을 지닌 항성이 죽어가며 생성하는 천체이다. 이러한 종류의 항성은 상대적으로 가벼운 질량 때문에, 중심핵에서는 탄소 핵융합을 일으킬 만큼 충분한 온도에 도달하지 않는다. 대신, 헬륨 연소 과정 동안 적색거성이 된 다음에, 외부 대기는 우주공간으로 방출되며 행성상 성운을 형성하고, 대부분 탄소 산소로 이루어진 핵만이 남아 백색왜성을 형성하게 된다.

백색왜성에서는 핵융합이 더 일어나지 않는다. 따라서 에너지를 생성할 수 없기 때문에 점차 식어가게 되며, 또한 핵이 중력에 의해 붕괴하는 것을 막지 못하고, 결국 매우 밀도가 높은 상태가 된다. 대개는 지구 정도의 부피에 태양 절반 정도의 질량이 응집되게 된다. 하지만 전자축퇴압에 의해 더 이상 붕괴는 이루어지지 않으며 부피를 유지할 수 있게 된다. 전자축퇴압이 버틸 수 있는 최대의 질량은 대략 태양의 1.44배 정도이다. 이를 찬드라세카 한계라고 한다. 백색왜성은 이 한계를 넘지 못한 별을 일컬으며, 찬드라세카르 한계를 넘어섬과 동시에 질량이 태양의 약 3배 이내이면 중성자별, 3배를 넘어가면 블랙홀이 된다고 알려져 있다.

더 에너지를 생성할 수 없는 백색왜성은 수백억 년 이상의 세월을 지나며 식어가고, 결국은 관찰할 수 없는 수준에 이르게 된다. 하지만 137억 년 정도로 추정되는 우주의 현재 나이로 유추해볼 때, 아무리 오래된 백색왜성이라 할지라도 여전히 수천 켈빈의 온도를 유지하고 있다는 것을 알 수 있다.

백색왜성은 매우 흔하며, 전체 항성 가운데 6% 정도를 차지하고 있다.


1. 형성


중간 이하의 질량을 지닌 항성은 자신이 지닌 수소 헬륨으로 핵융합을 마친 이후에, 거의 모두가 백색왜성으로 변하게 된다. 핵융합을 거의 마쳐갈 때쯤, 항성은 적색거성으로 변하게 되며, 거의 모든 외부 대기의 물질을 행성상 성운을 형성하며 방출하게 된다. 결국 100,000 켈빈 이상의 뜨거운 핵만이 남게되며, 이 핵은 초기 백색왜성으로 안정하게 된다.

일반적인 백색왜성은 태양 질량의 절반이며, 지름은 지구보다 약간 더 큰 수준이다. 즉 백색왜성의 밀도는 109 kg·m−3 정도이며, 이 밀도보다 높은 밀도를 지니는 것은 중성자별, 블랙홀, 가설상의 쿼크별 정도이다. 일반적인 물질이 부피가 클수록 질량이 많이 나가는 것에 반해, 이른바 축퇴물질로 이루어진 백색왜성은 질량이 높을수록 중력으로 인해 크기는 작아진다. 백색왜성의 최대 질량 한계는 찬드라세카 한계라고 하며, 이는 태양 질량의 1.4배 수준이다. 이 질량이 넘어서게 되면, 전자축퇴압에 의해 지탱되던 별이 마침내 높은 중력으로 인해 붕괴하게 되며, 중성자별을 형성하게 된다.

비록 이러한 질량 면에서의 한계로 말미암아 질량이 높은 수많은 항성은 백색왜성이 될 수 없을 것으로 보이지만, 실제로 대부분의 항성은 백색왜성으로 수명을 마치게 된다. 이는 핵융합 최후의 단계에서 대부분의 질량을 우주로 방출하기 때문이다. 심지어 태양의 8배의 질량을 지닌 항성조차도 백색왜성이 될 것으로 생각된다.


2. 특징


경우에 따라 어느 정도의 차이는 있겠지만, 대부분의 백색왜성은 지구 정도의 크기에 태양 질량의 0.5~0.6배의 질량이 응집되어 있다. 지구는 태양 직경의 1/100에 불과하므로, 백색왜성의 부피는 태양 부피의 100만 분의 1 가량이며, 따라서 백색왜성의 밀도는 태양의 밀도의 100만 배 정도에 해당한다. 

그 정도의 높은 밀도를 가진 물질은 축퇴물질이라고 불린다. 축퇴물질에 대한 것은 1930년대 양자역학으로 설명되었다. 백색왜성이 중력으로 인해 붕괴하지 않을 수 있는 이유는 전자축퇴압 때문이며, 이 힘은 온도와는 무관하며 밀도에만 관련 있다는 것이다.

모든 관측된 항성에 대해 절대 등급에 대한 색지수의 표, 즉 헤르츠스프룽-러셀 도표를 작성한다면, 도표상에서 절대 등급과 색지수의 모든 가능한 조합이 가능한 것은 아니다. 대부분의 별은 도표상에서 주계열이라고 불리는 띠를 이루며 놓이게 된다. 

주계열은 좌측 상단의 뜨겁고 밝은 영역에서 우측 하단의 차갑고 어두운 영역으로 이루어져 있다. 주계열상의 차갑고 질량이 낮은 별은 붉게 보이기 때문에 적색왜성이라고 하며, 때로 더욱 차가운 별은 갈색왜성이라고 불리기도 한다.

 이러한 종류의 별은 백색왜성과는 완전히 다른 천체이다. 적색왜성에서 붕괴로부터 질량을 지탱하는 힘은 이상 기체 방정식을 따르는 뜨거운 기체이다.

반면, 백색왜성은 헤르츠스프룽-러셀 도표상에서 좌측 하단, 즉 뜨겁고 어두운 부분에 위치하고 있다. 대부분의 백색왜성은 극도로 뜨겁다. 이러한 열은 붕괴 과정에서 발생한 열로, 인근 별에서 물질을 흡수하지 않는한 계속해서 생성되는 것은 아니다. 

하지만 백색왜성은 매우 작으며, 따라서 백색왜성의 열은 매우 적은 면적을 지니는 지표면을 통해서만 발산될 수 있다. 이러한 이유로 백색왜성은 매우 오랜 기간 동안 뜨거운 채로 남아 있을 수 있는 것이다. 여러 증거로 판단하건데, 백색왜성의 내부는 세월이 지나면서 식어감에 따라 서서히 결정화되는 것으로 추측된다. 즉 마침내는 다이아몬드와 같은 결정체로 안정화 된다는 것이다. BPM 37093은 이러한 예이다.


수많은 시간이 지나 백색왜성이 주변온도와 동일하게 완전히 식고나면 마침내 흑색왜성으로 변하게 된다. 이론에 따르면, 흑색왜성은 주변 우주와 동일한 온도이며, 단지 전자기파만 약하게 생성하고 있을 뿐이다. 하지만 실제로 우주의 나이는 어떤 백색왜성도 흑색왜성으로 식을 만큼 오래되지 않았다. 

즉 현재 우주에는 흑색왜성이 존재하지 않는 것으로 생각되며, 현재까지 발견된 가장 차가운 백색왜성은 3,900 켈빈 정도이다. 백색왜성이 식어가는 속도는 식어감에 따라 점점 느려진다. 20,000 켈빈에서 5,000 켈빈까지 식는 시간과 5,000 켈빈에서 4,000 켈빈까지 식는 시간은 동일하다. 결국 20,000 켈빈의 온도를 지니는 태양 질량의 절반 정도인 백색 왜성이 주변 온도와 동일해지려면 250억 년 정도의 시간이 걸린다. 반면 우주의 추정 나이는 130억 년 정도이다.

많은 인근의 젊은 백색왜성은 약한 X선을 방출하는 것으로 밝혀졌다. 이는 X선 천문학 자외선 천문학을 통해 백색왜성의 얇은 대기구조와 조성에 대한 연구를 가능하게 해준다.

백색왜성은 찬드라세카 한계로 말미암아 태양 질량의 1.4배를 초과할 수 없다. 

하지만, 이 한계를 넘어설 수 있는 방법이 존재한다. 쌍성계를 이루는 백색 왜성은, 동반성으로부터 물질을 계속해서 받아들인다. 

만약 흡수한 물질이 백색왜성을 짓눌러서 축퇴압력이 더이상 버티지 못하는 수준에 이른다면, 백색왜성은 폭발하게 된다. 이것은 Ia형 초신성이라고 하며, 모든 초신성 형태가운데 가장 강력한 형태이다.


 만약 흡수 물질이 백색왜성을 짓누르지 않고 대신 표면에서 핵융합을 일으킨다면, 백색왜성은 생성된 에너지로 말미암아 밝게 빛나면서 대기를 우주로 발산하게 된다. 이러한 현상을 신성이라고 한다. 이 경우 백색 왜성의 핵은 실제 반응하지 않고 그대로 유지되므로, 동반성으로부터 수소만 계속 유입된다면 몇번이고 신성이 될 수 있다.



'其他 關心事 > 天文' 카테고리의 다른 글

초신성(Supernova)  (0) 2012.12.19
감마선 폭발  (0) 2012.12.19
거성 및 초거성, 그리고 극대거성  (0) 2012.12.19
항성 -2- 중성자 별  (0) 2012.12.17
항성의 종류 -1- 백색 왜성  (0) 2012.12.17
지구에서 가까운 별 순위  (0) 2012.12.16
Posted by Lucidity1986

댓글을 달아 주세요

이전버튼 1 이전버튼

블로그 이미지
Since 2012.11.03 lucidity.co.kr
Lucidity1986

카테고리

Yesterday191
Today43
Total851,261

달력

 « |  » 2018.12
            1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31          

글 보관함


티스토리 툴바